ÌâÄ¿ÄÚÈÝ
8£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÍÖÔ²CÉÏÒìÓÚµãA£¬BµÄÈÎÒâÒ»µã£¬ÇÒÖ±ÏßPA£¬PB·Ö±ðÓëyÖá½»ÓÚµãM£¬N£¬ÈôMF2£¬NF2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Çók1+k2µÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÇóµÃ$c=\sqrt{2}$£¬a=2£¬½áºÏÒþº¬Ìõ¼þµÃµ½b2=a2-c2=2£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÉèB£¨x0£¬y0£©£¬P£¨x1£¬y1£©£¬ÔòA£¨-x0£¬y0£©£¬ÓÉÖ±Ïß·½³ÌµÄб½ØÊ½ÇóµÃÖ±ÏßAPµÄ·½³Ì£¬È¡x=0£¬ÇóµÃyÖµ£¬¼´¿ÉµÃµ½M×ø±ê£¬Í¬Àí¿ÉµÃNµÄ×ø±ê£®ÓÉÁ½µãÇóбÂʵõ½k1£¬k2£¬½èÖúÓÚA£¬BÔÚÍÖÔ²CÉÏ£¬µÃµ½k1•k2=1£¬Ôò$|{k}_{1}+{k}_{2}|=|{k}_{1}|+|{k}_{2}|¡Ý2\sqrt{|{k}_{1}||{k}_{2}|}=2$£®ÔÙÓÉk1=k2ʱM£¬NÖØºÏ£¬¼´A£¬BÖØºÏÓëÌõ¼þ²»·û£¬µÃk1¡Ùk2£®¼´µÈºÅ²»³ÉÁ¢£¬´Ó¶øÇóµÃk1+k2µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©¡ß½¹¾àΪ$2\sqrt{2}$£¬¡à$2c=2\sqrt{2}$£¬$c=\sqrt{2}$£®
ÓÖ|F1A|+|F2A|=4£¬µÃ2a=4£¬¡àa=2£®
Ôòb2=a2-c2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨¢ò£©ÉèB£¨x0£¬y0£©£¬P£¨x1£¬y1£©£¬ÔòA£¨-x0£¬y0£©£¬
Ö±ÏßAPµÄ·½³ÌΪ$y-{y}_{1}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}+{x}_{0}}£¨x-{x}_{1}£©$£¬Áîx=0£¬µÃ$y=\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}$£®
¹Ê$M£¨0£¬\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}£©$£¬
ͬÀí¿ÉµÃ$N£¨0£¬\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{x}_{1}-{x}_{0}}£©$£®
¡à${k}_{1}=-\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{\sqrt{2}£¨{x}_{1}+{x}_{0}£©}$£¬${k}_{2}=-\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{\sqrt{2}£¨{x}_{1}-{x}_{0}£©}$
Òò´Ë${k}_{1}•{k}_{2}=\frac{1}{2}•\frac{{{x}_{1}}^{2}{{y}_{0}}^{2}-{{x}_{0}}^{2}{{y}_{1}}^{2}}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}$£®
¡ßA£¬BÔÚÍÖÔ²CÉÏ£¬¡à${{y}_{1}}^{2}=2-\frac{1}{2}{{x}_{1}}^{2}£¬{{y}_{0}}^{2}=2-\frac{1}{2}{{x}_{0}}^{2}$£®
¹Ê${k}_{1}•{k}_{2}=\frac{1}{2}•\frac{{{x}_{1}}^{2}£¨2-\frac{1}{2}{{x}_{0}}^{2}£©-{{x}_{0}}^{2}£¨2-\frac{1}{2}{{x}_{1}}^{2}£©}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}$=1
¡à$|{k}_{1}+{k}_{2}|=|{k}_{1}|+|{k}_{2}|¡Ý2\sqrt{|{k}_{1}||{k}_{2}|}=2$£®
ÓÖ¡ßµ±k1=k2ʱM£¬NÖØºÏ£¬¼´A£¬BÖØºÏ£¬ÕâÓëÌõ¼þ²»·û£¬¡àk1¡Ùk2£®
Òò´Ëk1+k2µÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁË¡°Éá¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬¿¼²éÁËѧÉúµÄÕûÌåÔËËãÄÜÁ¦£¬ÊÇѹÖáÌ⣮