题目内容
已知函数f(x)=tan(2x+
)
(I)求该函数的定义域,周期及单调区间;
(II)若f(θ)=
,求
的值.
| π |
| 4 |
(I)求该函数的定义域,周期及单调区间;
(II)若f(θ)=
| 1 |
| 7 |
2cos2
| ||||
|
(Ⅰ)由题意得,T=
由2x+
≠
+kπ(k∈Z)得,x≠
+
,
由-
+kπ<2x+
<
+kπ(k∈Z)得,
-
<x<
+
,
综上得,函数的周期是
,定义域是{x|x≠
+
,k∈Z},
单调增区间是(
-
,
+
)(k∈Z).
(Ⅱ)式子
=
=
①,
∵f(θ)=
,∴tan(2θ+
)=
,
则tan2θ=tan[(2θ+
)-
]=
=-
,
由tan2θ=
=-
得,tanθ=3或-
,
把tanθ=3代入上式①得,
=-
,
把tanθ=-
代入上式①得,
=2.
| π |
| 2 |
由2x+
| π |
| 4 |
| π |
| 2 |
| kπ |
| 2 |
| π |
| 8 |
由-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| kπ |
| 2 |
| 3π |
| 8 |
| kπ |
| 2 |
| π |
| 8 |
综上得,函数的周期是
| π |
| 2 |
| kπ |
| 2 |
| π |
| 8 |
单调增区间是(
| kπ |
| 2 |
| 3π |
| 8 |
| kπ |
| 2 |
| π |
| 8 |
(Ⅱ)式子
2cos2
| ||||
|
| cosθ-sinθ |
| sinθ+cosθ |
| 1-tanθ |
| tanθ+1 |
∵f(θ)=
| 1 |
| 7 |
| π |
| 4 |
| 1 |
| 7 |
则tan2θ=tan[(2θ+
| π |
| 4 |
| π |
| 4 |
| ||
1+
|
| 3 |
| 4 |
由tan2θ=
| 2tanθ |
| 1-tan2θ |
| 3 |
| 4 |
| 1 |
| 3 |
把tanθ=3代入上式①得,
2cos2
| ||||
|
| 1 |
| 2 |
把tanθ=-
| 1 |
| 3 |
2cos2
| ||||
|
练习册系列答案
相关题目