题目内容
11.已知数列{an}是等差数列,且a1,a2,a3是(1+$\frac{1}{2}$x)m展开式的前三项的系数.(1)求(1+$\frac{1}{2}$x)m展开式的中间项;
(2)试比较$\frac{1}{a_n}$+$\frac{1}{{{a_{n+1}}}}$+$\frac{1}{{{a_{n+2}}}}$+…+$\frac{1}{{{a_{2n}}}}$与$\frac{1}{2}$的大小.
分析 (1)由二项式定理和题意求出a1,a2,a3,由等差中项的性质列出方程,求出m的值即可求出展开式的中间项;
(2)由(1)可得an=3n-2,令n=1、2、3代入$\frac{1}{a_n}$+$\frac{1}{{{a_{n+1}}}}$+$\frac{1}{{{a_{n+2}}}}$+…+$\frac{1}{{{a_{2n}}}}$化简,判断出与$\frac{1}{2}$的大小猜测出一般结论,利用数学归纳法进行证明,化简当n=k+1时的式子把n=k时的假设代入并进行化简证明结论.
解答 解:(1)因为${(1+\frac{1}{2}x)^m}=1+C_m^1(\frac{1}{2}x)+C_m^2{(\frac{1}{2}x)^2}+…$,
所以依题意得,a1=1,${a_2}=\frac{1}{2}m$,${a_3}=\frac{m(m-1)}{8}$,
由2a2=a1+a3得,m=1(舍去),或m=8,
所以${(1+\frac{1}{2}x)^m}$展开式的中间项是第五项为:${T_5}=C_8^4{(\frac{1}{2}x)^4}=\frac{35}{8}{x^4}$;
(2)由(1)知,an=3n-2,
当n=1时,$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}=\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_4}=1+\frac{1}{4}>\frac{1}{2}$,
当n=2时,$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}=\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}=\frac{1}{4}+\frac{1}{7}+\frac{1}{10}=\frac{69}{140}<\frac{1}{2}$,
当n=3时,$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}=\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}+\frac{1}{a_6}$
=$\frac{1}{7}+\frac{1}{10}+\frac{1}{13}+\frac{1}{16}$$<\frac{1}{7}+\frac{3}{10}<\frac{1}{5}+\frac{3}{10}=\frac{1}{2}$,
猜测:当n≥2时$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}<$$\frac{1}{2}$,
以下用数学归纳法加以证明:
①n=2时,结论成立,
②设当n=k时,$\frac{1}{a_k}+\frac{1}{{{a_{k+1}}}}+\frac{1}{{{a_{k+2}}}}+…+\frac{1}{{{a_{2k}}}}<\frac{1}{2}$,
则n=k+1时,$\frac{1}{{{a_{(k+1)}}}}+\frac{1}{{{a_{(k+1)+1}}}}+\frac{1}{{{a_{(k+1)+2}}}}+…+\frac{1}{{{a_{2(k+1)}}}}$
=$(\frac{1}{a_k}+\frac{1}{{{a_{(k+1)}}}}+\frac{1}{{{a_{(k+1)+1}}}}+\frac{1}{{{a_{(k+1)+2}}}}+…+\frac{1}{{{a_{2k}}}})$$+(\frac{1}{{{a_{2k+1}}}}+\frac{1}{{{a_{2k+2}}}}-\frac{1}{a_k})$
$<\frac{1}{2}$$+(\frac{1}{{{a_{2k+1}}}}+\frac{1}{{{a_{2k+2}}}}-\frac{1}{a_k})$=$\frac{1}{2}+\frac{1}{3(2k+1)-2}+\frac{1}{3(2k+2)-2}-\frac{1}{3k-2}$
=$\frac{1}{2}+\frac{(6k+1)(3k-2)+(6k+4)(3k-2)-(6k+1)(6k+4)}{(6k+1)(6k+4)(3k-2)}$
=$\frac{1}{2}+\frac{(6k+1)(3k-2)+(6k+4)(3k-2)-(6k+1)(6k+4)}{(6k+1)(6k+4)(3k-2)}$
=$\frac{1}{2}+\frac{(6k+1)(3k-2)+(6k+4)(-3k-3)}{(6k+1)(6k+4)(3k-2)}$=$\frac{1}{2}+\frac{-39k-14}{(6k+1)(6k+4)(3k-2)}$$<\frac{1}{2}$,
综合①②可得,当n=1时,$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}>\frac{1}{2}$,
当n≥2时,$\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+…+\frac{1}{{{a_{2n}}}}<$$\frac{1}{2}$.
点评 本题考查等差中项的性质,二项式定理,以及数学归纳法的应用,考查化简、变形能力.
| A. | 2-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$ | B. | 2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$ | C. | $\frac{1}{2}$(n2+n+2)-$\frac{1}{{2}^{n}}$ | D. | $\frac{1}{2}$(n+1)n+1-$\frac{1}{{2}^{n+1}}$ |