题目内容

20.已知函数f(x)是(-∞,+∞)的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),求:
(1)f(0)与f(2)的值;
(2)f(3)的值;
(3)f(2013)+f(-2014)的值.

分析 (1)直接根据函数表达式即可求f(0)与f(2)的值;
(2)根据关系式f(x+2)=-f(x),即可求f(3)的值;
(3)利用函数的奇偶性和周期性即可求f(2013)+f(-2014)的值.

解答 解:(1)∵当x∈[0,2)时,f(x)=log2(x+1),
∴f(0)=log21=0,
∵x≥0,都有f(x+2)=-f(x),
∴f(2)=-f(0)=0.
(2)∵f(x+2)=-f(x),
∴f(3)=f(1+2)=-f(1)=-log22=-1;
(3)∵x≥0,都有f(x+2)=-f(x),
∴x≥0,都有f(x+4)=-f(x+2)=f(x),此时函数的周期为4,
则f(2013)=f(503×4+1)=f(1)=log22=1.
f(-2014)=f(2014)=f(503×4+2)=f(2)=0,
∴f(2013)+f(-2014)=1+0=1.

点评 本题主要考查函数值的计算,根据抽象函数的关系,结合函数奇偶性和周期性进行转化是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网