题目内容
20.已知向量$\overrightarrow{a}$=(sinx+cosx,$\sqrt{2}$cosx ),$\overrightarrow{b}$=(cosx-sin x,$\sqrt{2}$sinx),x∈[-$\frac{π}{8}$,0].(1)求|$\overrightarrow{a}$|的取值范围;
(2)求函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-|$\overrightarrow{a}$|的值域.
分析 (1)利用数量积运算性质、三角函数的单调性即可得出;
(2)利用数量积运算性质、和差公式、倍角公式,可得:$f(x)=\overrightarrow a•\overrightarrow b-|\overrightarrow a|=\sqrt{2}sin(2x+\frac{π}{4})-\sqrt{\sqrt{2}sin(2x+\frac{π}{4})+2}$,令$t=|\overrightarrow a|=\sqrt{\sqrt{2}sin(2x+\frac{π}{4})+2}∈[\sqrt{2},\sqrt{3}]$,再利用二次函数的单调性即可得出.
解答 解:(1)$|\overrightarrow a|=\sqrt{{{(sinx+cosx)}^2}+2{{cos}^2}x}=\sqrt{1+sin2x+cos2x+1}$=$\sqrt{\sqrt{2}sin(2x+\frac{π}{4})+2}$,
∵$x∈[-\frac{π}{8},0]$,
∴$0≤2x+\frac{π}{4}≤\frac{π}{4}$,即$0≤sin(2x+\frac{π}{4})≤\frac{{\sqrt{2}}}{2}$,
∴$|\overrightarrow a|$的取值范围是$[\sqrt{2},\sqrt{3}]$.
(2)$\overrightarrow a•\overrightarrow b={cos^2}x-{sin^2}x+2sinxcosx=sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$,
∴$f(x)=\overrightarrow a•\overrightarrow b-|\overrightarrow a|=\sqrt{2}sin(2x+\frac{π}{4})-\sqrt{\sqrt{2}sin(2x+\frac{π}{4})+2}$,
令$t=|\overrightarrow a|=\sqrt{\sqrt{2}sin(2x+\frac{π}{4})+2}∈[\sqrt{2},\sqrt{3}]$,
∴f(x)=t2-2-t
=$(t-\frac{1}{2})^{2}$-$\frac{9}{4}$,其值域为$[-\sqrt{2},1-\sqrt{3}]$.
点评 本题考查了数量积运算性质、三角函数的单调性、和差公式、倍角公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
| A. | P(A)-P(B) | B. | P(A)+P($\overline{B}$)-P(A$\overline{B}$) | C. | P(A)-P(AB) | D. | P(A)-P(B)+P(AB) |
| A. | (-∞,1] | B. | [-1,0] | C. | [0,1] | D. | [-1,1] |
| A. | 2 | B. | 1 | C. | 0 | D. | -2 |
| A. | 2 | B. | $\frac{\sqrt{5}}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |