题目内容
19.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC,BC的距离乘积的最大值是3.分析 设P到AC的距离为x,到BC的距离为y,根据比例线段的性质可知,$\frac{x}{3}$=$\frac{4-y}{4}$,整理求得 y=$\frac{12-4x}{3}$,进而可求得xy的表达式根据二次函数的性质求得答案.
解答 解:如图,设P到AC的距离为x,到BC的距离为y,$\frac{x}{3}$=$\frac{4-y}{4}$,
即最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,
所以4x=12-3y,y=$\frac{12-4x}{3}$,
求xy最大,也就是那个矩形面积最大.
xy=x•$\frac{12-4x}{3}$=-$\frac{4}{3}$(x2-3x),当x=$\frac{3}{2}$时,xy有最大值3.
故答案为3.
点评 本题主要考查了解三角形的问题.考查了学生转化和化归思想,函数思想的运用.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关题目
10.某校为了了解1200名学生对高效课堂试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( )
| A. | 30 | B. | 25 | C. | 20 | D. | 12 |
11.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的A品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温x(°C)与该奶茶店的A品牌饮料销量y(杯),得到如下表数据:
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组书记恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)
| 日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
| 平均气温x(℃) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)
8.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值为( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |