题目内容
5.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,则z=x-3y的最大值为2.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,![]()
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{3}x-\frac{z}{3}$,
由图象可知当直线y=$\frac{1}{3}x-\frac{z}{3}$经过点C时,直线y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此时z最大,
由$\left\{\begin{array}{l}{x=y+4}\\{2x+y=11}\end{array}\right.$,得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,即C(5,1).
代入目标函数z=x-3y,
得z=5-3×1=2,
故答案为:2.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关题目
17.若集合A={x|-1≤x≤1},B={x|0<x≤2},则A∩B=( )
| A. | {x|0<x≤1} | B. | {x|-1≤x<0} | C. | {x|0≤x≤2} | D. | {x|0≤x≤1} |
15.设O是△ABC的外心,a,b,c分别为角A,B,C对应的边,已知b2-2b+c2=0,则$\overrightarrow{{B}C}•\overrightarrow{{A}{O}}$的范围是( )
| A. | $({-\frac{1}{4},2}]$ | B. | $[{-\frac{1}{4},2})$ | C. | $[{-2,\frac{1}{4}})$ | D. | $({-2,\frac{1}{4}}]$ |