题目内容

证明函数f(x)=ax2+bx+c(a<0)在(-∞,-
b
2a
)
上是增函数.
任取x1x2∈(-∞,-
b
2a
),且x1x2,f(x1)=ax12+bx1+c,f(x2)=ax22+bx2+c

f(x1)-f(x2)=a(x12-x22)+b(x1-x2)=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b]
由x1<x2,x1-x2<0,而x1<-
b
2a
x2<-
b
2a
,所以x1+x2<-
b
a

又a<0,所以a(x1+x2)>(-
b
a
)•a=-b
,从而a(x1+x2)+b>0
由此可知f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)=ax2+bx+c(a<0)在(-∞,-
b
2a
)
上是增函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网