题目内容
【题目】设等差数列{an}的前n项和为Sn,且a3+2S6=77,a10﹣a5=10.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:b1=1,bn﹣bn﹣1=an﹣n+1(n≥2),求数列{
}的前n项和Tn.
【答案】(1)an=2n﹣1(2)![]()
【解析】
(1)联立解方程组,得
,求出通项公式即可;
(2)求出
,利用裂项相消法求出数列
的前
项和
.
(1)等差数列{an}的前n项和为Sn,且a3+2S6=77,a10﹣a5=10,
,得
,
故an=2n﹣1;
(2)b1=1,bn﹣bn﹣1=an﹣n+1=n(n≥2),
∴bn=(bn﹣bn﹣1)+(bn﹣1﹣bn﹣2)+…+(b2﹣b1)+b1=n+n﹣1+…+2+1
,
当n=1时,显然成立,
,
数列{
}的前n项和Tn=8(
)=8(1
)
.
练习册系列答案
相关题目
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,![]()