题目内容

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.
(I)见解析;(Ⅱ).
本试题主要是考查了面面垂直和线面角的求解的综合运用。
(1)第一问中要证明面面垂直关键是证明线面垂直,然后利用判定定理得到。
(2)第二问先根据线面角的定义,作出线面角,然后利用直角三角形的边角的关系求解的得到。

(I)平面平面;   …………………1分
证明:由题意得 
,则    …………………………3分
平面,                  ………………5分
故平面平面             ………………7分
(Ⅱ)解法1:以点A为坐标原点,AB所在的直线为y轴建立
空间直角坐标系如右图示,则,, 可得,  9分
平面ABCD的单位法向量为,          ……………………………………11分
设直线PC与平面ABCD所成角为,则  13分
,即直线PC与平面ABCD所成角的正弦值 ……………………………14分
解法2:

由(I)知平面,∵
∴平面ABCD⊥平面PAB,                                …………………………9分
在平面PAB内,过点P作PE⊥AB,垂足为E,则PE⊥平面ABCD,连结EC,
则∠PCE为直线PC与平面ABCD所成的角,              …………………………11分
在Rt△PEA中,∵∠PAE=60°,PA=1,∴,

 …………………………13分
在Rt△PEC中.………………14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网