题目内容

F1、F2是双曲线C的两个焦点,P是C上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为(  )
A、1+
2
B、2+
2
C、3-
2
D、3+
2
分析:先由△F1PF2是等腰直角三角形得|F1F2|=|PF2|,再把等量关系转化为用a,c来表示即可求双曲线C的离心率.
解答:解:由△PF1F2为等腰直角三角形,又|PF1|≠|PF2|,
故必有|F1F2|=|PF2|,即2c=
b2
a

从而得c2-2ac-a2=0,即e2-2e-1=0,
解之得e=1±
2

∵e>1,∴e=1+
2

故选:A.
点评:本题是对双曲线性质中离心率的考查.求离心率,只要找到a,c之间的等量关系即可求.是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网