题目内容
P为双曲线C上一点,F1、F2是双曲线C的两个焦点,过双曲线C的一个焦点作∠F1PF2的平分线的垂线,设垂足为Q,则Q点的轨迹是( )
分析:点F1关于∠F1PF2的角平分线PQ的对称点Q在直线PF2的延长线上,由此得到|F2Q|=|PF1|-|PF2|=2a,又OQ是△F2F1P的中位线,|OQ|=a,由此可以判断出点M的轨迹.
解答:解:点F1关于∠F1PF2的角平分线PQ的对称点Q在直线PF2的延长线上,
故|F2Q|=|PF1|-|PF2|=2a,
又OQ是△F2F1P的中位线,
故|OQ|=a,
点Q的轨迹是以原点为圆心,a为半径的圆.
故选B.
故|F2Q|=|PF1|-|PF2|=2a,
又OQ是△F2F1P的中位线,
故|OQ|=a,
点Q的轨迹是以原点为圆心,a为半径的圆.
故选B.
点评:本小题主要考查轨迹方程等基础知识,考查运算求解能力,考查数形结合思想,属于基础题,解答关键是应用角分线的性质解决问题.
练习册系列答案
相关题目