题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右两个焦点分别为F1、F2、A、B为其左、右两个顶点,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且∠MAB=30°,则该双曲线的离心率为(  )
A、
21
2
B、
21
3
C、
19
3
D、
19
2
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程和圆的方程,求出交点M,再由两点的斜率公式,得到a,b的关系,再由离心率公式即可得到所求值.
解答: 解:双曲线
x2
a2
-
y2
b2
=1的渐近线方程为y=±
b
a
x,
以F1F2为直径的圆的方程为x2+y2=c2
将直线y=
b
a
x代入圆的方程,可得,
x=
ac
a2+b2
=a(负的舍去),y=b,
即有M(a,b),又A(-a,0),
由于∠MAB=30°,则直线AM的斜率为k=
3
3

又k=
b
2a
,则3b2=4a2=3(c2-a2),
即有3c2=7a2
则离心率e=
c
a
=
21
3

故选B.
点评:本题考查双曲线的方程和性质,考查直线和圆的位置关系,直线的斜率公式,考查离心率的求法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网