题目内容
1.已知直线l:y=2x+1与圆C:x2+y2=1交于两点A,B,不在圆上的一点M(-1,m),若$\overrightarrow{MA}$$•\overrightarrow{MB}=1$,则m的值为( )| A. | -1,$\frac{7}{5}$ | B. | 1,$\frac{7}{5}$ | C. | 1,-$\frac{7}{5}$ | D. | -1,$-\frac{7}{5}$ |
分析 求出A,B坐标,然后利用向量的数量积列出方程,求解即可.
解答 解:将直线l的方程与圆C的方程联立得$\left\{\begin{array}{l}y=2x+1\\{x^2}+{y^2}=1\end{array}\right.$,化简得5x2+4x=0,解得x=0或$x=-\frac{4}{5}$,所以A(0,1),$B(-\frac{4}{5},-\frac{3}{5})$,所以$\overrightarrow{MA}=(1,1-m)$,$\overrightarrow{MB}=(\frac{1}{5},-\frac{3}{5}-m)$,根据$\overrightarrow{MA}$$•\overrightarrow{MB}=1$,所以$\frac{1}{5}+({1-m})({-\frac{3}{5}-m})=1$,化简5m2-2m-7=0,解得${m_1}=\frac{7}{5}$或m2=-1.
故选:A.
点评 本题考查直线与圆的位置关系以及向量的数量积的求法,考查计算能力.
练习册系列答案
相关题目
9.已知等差数列{an}的前n项和为sn,若a2=4,a5=7,则$s_{10}^{\;}$=( )
| A. | 12 | B. | 60 | C. | 75 | D. | 120 |
16.
函数y=2sin(ω•x+φ)(ω>0,0<φ<π)在一个周期内的图象如图所示,则( )
| A. | ω=2,φ=$\frac{2π}{3}$ | B. | ω=2,φ=$\frac{π}{3}$ | C. | ω=3,φ=$\frac{2π}{3}$ | D. | ω=3,φ=$\frac{π}{3}$ |
6.2017年4月1日,中共中央、国务院决定设立的国家级新区--雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:
(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)
| 天数t(单位:天) | 1日 | 2日 | 3日 | 4日 | 5日 |
| A路口车流量x(百辆) | 0.2 | 0.5 | 0.8 | 0.9 | 1.1 |
| B路口车流量y(百辆) | 0.23 | 0.22 | 0.5 | 1 | 1.5 |
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)