题目内容

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为

    (i)若,求直线l的倾斜角;

    (ii)若点Q在线段AB的垂直平分线上,且.求的值.

 

【答案】

(Ⅰ)解:由e=,得.再由,解得a=2b.

由题意可知,即ab=2.解方程组得a=2,b=1,

所以椭圆的方程为..。。。。。。。。。。。。。。。。。。。。。。。。2分

(Ⅱ)(i)解:由(Ⅰ)可知点A的坐标是(-2,0).设点B的坐标为,直线l的斜率为k.则直线l的方程为y=k(x+2).于是A、B两点的坐标满足方程组消去y并整理,得

.

,得.从而.

所以.

,得.

整理得,即,解得k=.

所以直线l的倾斜角为.。。。。。。。。。。。。。。。6分

(ii)解:设线段AB的中点为M,由(i)得到M的坐标为.

以下分两种情况:

(1)当k=0时,点B的坐标是(2,0),线段AB的垂直平分线为y轴,于是

,得

(2)当时,线段AB的垂直平分线方程为

,解得。由

,整理得。故。所以

综上,。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12分

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网