题目内容
如图,在正方体中,点为线段的中点。设点在线段上,直线与平面所成的角为,则的取值范围是
A. B. C. D.
若实数k满足则曲线与曲线的
A.离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等
设函数=
(Ⅰ)证明:2;
(Ⅱ)若,求的取值范围.
某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年
研发新产品的结果如下:
其中分别表示甲组研发成功和失败;分别表示乙组研发成功和失败.
(I)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研
发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(II)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.
为了得到函数的图象,只需把函数的图象上所有的点
A.向左平行移动个单位长度 B.向右平行移动个单位长度
C.向左平行移动个单位长度 D.向右平行移动个单位长度
如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC约等于 。(用四舍五入法将结果精确到个位。参考数据:,,,,)
已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q。
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标。
(本题满分15分)已知函数的最大值为2,是集合中的任意两个元素,且的最小值为.
(1)求函数的解析式及其对称轴;
(2)若,求的值.
在正方形中,为的中点,是以为圆心,为半径的圆弧上的任意一点.
(1)若向正方形内撒一枚幸运小花朵,则小花朵落在扇形内的概率为 ;
(2)设,向量,若,则= .