题目内容
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
(1)见解析 (2)
(1)根据题意,在△AOC中,AC=a=2,AO=CO=
,
所以AC2=AO2+CO2,所以AO⊥CO.
又AO⊥BD,BD∩CO=O,
所以AO⊥平面BCD.
(2)方法一:由(1)知,CO⊥OD,以O为原点,OC,OD所在的直线分别为x轴、y轴建立如图的空间直角坐标系Oxyz,

则有O(0,0,0),D(0,
,0),
C(
,0,0),B(0,-
,0).
设A(x0,0,z0)(x0<0),
则
=(x0,0,z0),
=(0,
,0).
平面ABD的一个法向量为n=(z0,0,-x0).
平面BCD的一个法向量为m=(0,0,1),且二面角A-BD-C的大小为120°,
所以|cos<m,n>|=|cos120°|=
,得
=3
.
因为OA=
,所以
=
.解得x0=-
,z0=
.所以A(-
,0,
).
平面ABC的一个法向量为l=(1,-1,
).
设二面角A-BC-D的平面角为θ,
所以cosθ=|cos<l,m>|=|
|=
.
所以tanθ=
.
所以二面角A-BC-D的正切值为
.
方法二:折叠后,BD⊥AO,BD⊥CO.所以∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=
,所以AC=
.
如图,过点A作CO的垂线交CO延长线于点H,

因为BD⊥CO,BD⊥AO,且CO∩AO=O,所以BD⊥平面AOC.因为AH?平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.所以AH⊥BC.过点A作AK⊥BC,垂足为K,连接HK,因为BC⊥AH,AK∩AH=A,所以BC⊥平面AHK.因为HK?平面AHK,所以BC⊥HK.所以∠AKH为二面角A-BC-D的平面角.
在△AOH中,得AH=
,OH=
,所以CH=CO+OH=
+
=
.
在Rt△CHK中,HK=
=
,
在Rt△AHK中,tan∠AKH=
=
=
.
所以二面角A-BC-D的正切值为
.
所以AC2=AO2+CO2,所以AO⊥CO.
又AO⊥BD,BD∩CO=O,
所以AO⊥平面BCD.
(2)方法一:由(1)知,CO⊥OD,以O为原点,OC,OD所在的直线分别为x轴、y轴建立如图的空间直角坐标系Oxyz,
则有O(0,0,0),D(0,
C(
设A(x0,0,z0)(x0<0),
则
平面ABD的一个法向量为n=(z0,0,-x0).
平面BCD的一个法向量为m=(0,0,1),且二面角A-BD-C的大小为120°,
所以|cos<m,n>|=|cos120°|=
因为OA=
平面ABC的一个法向量为l=(1,-1,
设二面角A-BC-D的平面角为θ,
所以cosθ=|cos<l,m>|=|
所以tanθ=
所以二面角A-BC-D的正切值为
方法二:折叠后,BD⊥AO,BD⊥CO.所以∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=
如图,过点A作CO的垂线交CO延长线于点H,
因为BD⊥CO,BD⊥AO,且CO∩AO=O,所以BD⊥平面AOC.因为AH?平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.所以AH⊥BC.过点A作AK⊥BC,垂足为K,连接HK,因为BC⊥AH,AK∩AH=A,所以BC⊥平面AHK.因为HK?平面AHK,所以BC⊥HK.所以∠AKH为二面角A-BC-D的平面角.
在△AOH中,得AH=
在Rt△CHK中,HK=
在Rt△AHK中,tan∠AKH=
所以二面角A-BC-D的正切值为
练习册系列答案
相关题目