ÌâÄ¿ÄÚÈÝ
17£®ÏÂÁÐÊÇÓйØÈý½ÇÐÎABCµÄ¼¸¸öÃüÌ⣬¢ÙÈôtanA+tanB+tanC£¾0£¬Ôò¡÷ABCÊÇÈñ½ÇÈý½ÇÐΣ»
¢ÚÈôsin2A=sin2B£¬Ôò¡÷ABCÊǵÈÑüÈý½ÇÐΣ»
¢ÛÈô£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©•$\overrightarrow{BC}$=0£¬Ôò¡÷ABCÊǵÈÑüÈý½ÇÐΣ»
¢ÜÈôcosA=sinB£¬Ôò¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | .1 | B£® | .2 | C£® | 3 | D£® | 4 |
·ÖÎö ¢Ù¸ù¾ÝÁ½½ÇºÍ²îµÄÕýÇй«Ê½½øÐÐÅжϣ®¢Ú¸ù¾ÝÈý½Çº¯ÊýµÄ±¶½Ç¹«Ê½½øÐл¯¼òÅжϣ®¢Û¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄÓ¦ÓÃÈ¥Åжϣ®¢Ü¸ù¾ÝÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½½øÐл¯¼òÅжϣ®
½â´ð ½â£º¢Ù¡ßtanA+tanB=tan£¨A+B£©£¨1-tanAtanB£©£¬
¡àtanA+tanB+tanC=tan£¨A+B£©£¨1-tanAtanB£©+tanC=tanAtanBtanC£¾0£¬
¡àA£¬B£¬CÊÇ¡÷ABCµÄÄڽǣ¬¹ÊÄڽǶ¼ÊÇÈñ½Ç£¬¹Ê¢ÙÕýÈ·£»
¢Ú¡ßsin2A=sin2B
¡àsin2A-sin2B=cos£¨A+B£©sin£¨A-B£©=0
¡àcos£¨A+B£©=0»òsin£¨A-B£©=0
¡àA+B=$\frac{¦Ð}{2}$»òA=B£¬
Èôsin2A=sin2B£¬Ôò¡÷ABCÊǵÈÑüÈý½ÇÐλòÊÇÖ±½ÇÈý½ÇÐΣ»¹Ê¢Ú´íÎó
¢ÛÈô£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©•$\overrightarrow{BC}$=0£¬
Ôò£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©•£¨$\overrightarrow{AC}$-$\overrightarrow{AB}$£©=0£¬
¼´|$\overrightarrow{AB}$|2-|$\overrightarrow{AC}$|2=0£¬
Ôò|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2£¬¼´|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|£¬
ÔòAB=AC£¬Ôò¡÷ABCÊǵÈÑüÈý½ÇÐΣ»ÕýÈ·£¬¹Ê¢ÛÕýÈ·£¬
¢ÜÈôcosA=sinB£¬ÔòsinB=cosA=sin£¨$\frac{¦Ð}{2}-A$£©£¬¡à$B=\frac{¦Ð}{2}-A»òB+\frac{¦Ð}{2}-A=¦Ð$£¬
¼´A+B=$\frac{¦Ð}{2}$»òB-A=$\frac{¦Ð}{2}$£¬Ôò¡÷ABC²»Ò»¶¨ÎªÖ±½ÇÈý½ÇÐΣ¬¹Ê¢Ü´íÎó£¬
¹ÊÑ¡£ºB
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°Èý½ÇÐÎÐÎ×´µÄÅжϣ¬ÀûÓÃÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½ºÍÈý½Ç¹«Ê½Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®ÒªÇóÊìÁ·ÕÆÎÕÈý½Çº¯ÊýµÄÔËË㹫ʽ£¬¿¼²éѧÉúµÄÔËËãÄÜÁ¦£®
| A£® | $\sqrt{2}$ | B£® | 4 | C£® | 2 | D£® | $2\sqrt{2}$ |
| A£® | 1+$\sqrt{5}$ | B£® | $\frac{10}{3}$ | C£® | 2$\sqrt{2}$ | D£® | 3 |