题目内容
已知向量
=(x,y),
=(y,2),曲线C上的点满足:
•
=2x.点M(xk,xk+1)在曲线C上,且xk≠0,x1=1,数列{an}满足:ak=
,(k,n∈N+).
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an,求数列{|bn|}的前n项和Tn.
| OP |
| OQ |
| OP |
| OQ |
| 1 |
| xk |
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an,求数列{|bn|}的前n项和Tn.
(1)由题意可得xy+2y=2x,∴曲线C的方程为y=
(x≠-2).
∵点M(xk,xk+1)在曲线C上,且xk≠0,∴xk+1=
,
∴
=
+
,
∴ak+1=ak+
,a1=1.
∴数列{an}是等差数列,
∴an=1+(n-1)×
=
.
(2)bn=7-2an=6-n.
当n≤6时,Tn=
=
;
当n>6时,Tn=15+
(n-6)(1+n-6)=
(n2-11n+60).
∴Tn=
.
| 2x |
| x+2 |
∵点M(xk,xk+1)在曲线C上,且xk≠0,∴xk+1=
| 2xk |
| xk+2 |
∴
| 1 |
| xk+1 |
| 1 |
| xk |
| 1 |
| 2 |
∴ak+1=ak+
| 1 |
| 2 |
∴数列{an}是等差数列,
∴an=1+(n-1)×
| 1 |
| 2 |
| n+1 |
| 2 |
(2)bn=7-2an=6-n.
当n≤6时,Tn=
| n(5+6-n) |
| 2 |
| n(11-n) |
| 2 |
当n>6时,Tn=15+
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=
|
练习册系列答案
相关题目