题目内容
13.化简:$\frac{a-b}{\sqrt{a}+\sqrt{b}}$+$\frac{(\sqrt{a})^{3}+(\sqrt{b})^{3}}{a-\sqrt{ab}+b}$=2$\sqrt{a}$.分析 利用根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式求解.
解答 解:$\frac{a-b}{\sqrt{a}+\sqrt{b}}$+$\frac{(\sqrt{a})^{3}+(\sqrt{b})^{3}}{a-\sqrt{ab}+b}$
=$\sqrt{a}-\sqrt{b}$+$\sqrt{a}+\sqrt{b}$
=2$\sqrt{a}$.
故答案为:2$\sqrt{a}$.
点评 本题考查有理数指数幂化简求值,是基础题,解题时要注意根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式的合理运用.
练习册系列答案
相关题目
3.与向量$\overrightarrow{a}$=(2,3,6)共线的单位向量是( )
| A. | ($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$) | B. | (-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$) | ||
| C. | ($\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$)和(-$\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$) | D. | ($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$)和(-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$) |
1.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f(0)=f($\frac{π}{3}$),则( )
| A. | f(x)的最小正周期为2π | B. | f(x)的图象关于直线x=$\frac{5π}{6}$对称 | ||
| C. | f($\frac{2π}{3}$)=-2 | D. | f(x)在[0,$\frac{π}{4}$]上是增函数 |
5.下列函数中,值域为[1,+∞)的是( )
| A. | y=2x+1 | B. | y=$\sqrt{x-1}$ | C. | y=$\frac{1}{|x|}$+1 | D. | y=x+$\sqrt{x-1}$ |
2.已知log0.3(m+1)<log0.3(2m-1),则m的取值范围是( )
| A. | (-∞,2) | B. | $({\frac{1}{2},2})$ | C. | (2,+∞) | D. | (-1,2) |