题目内容
1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定义域为R},B={a|3a2+5a-2<0},则A∩B=( )| A. | (0,$\frac{4}{9}$) | B. | [0,$\frac{1}{3}$) | C. | (-2,0) | D. | ($\frac{1}{3}$,$\frac{4}{9}$) |
分析 先分别求出集合A和B,由此能求出A∩B.
解答 解:∵A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定义域为R}
={a|ax2+3ax+1>0的解集为R}
={a|$\left\{\begin{array}{l}{a>0}\\{△=9{a}^{2}-4a<0}\end{array}\right.$或a=0}={a|0≤a<$\frac{4}{9}$},
B={a|3a2+5a-2<0}={a|-2<a<$\frac{1}{3}$},
∴A∩B={a|0≤a<$\frac{1}{3}$}=[0,$\frac{1}{3}$).
故选:B.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
19.
河南多地遭遇年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾.郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动Ⅰ级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”.学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成如表:
(Ⅰ)请在图中完成被调查人员年龄的频率分布直方图;
(Ⅱ)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X,求随机变量X的分布列和数学期望.
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅱ)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X,求随机变量X的分布列和数学期望.
3.在($\sqrt{3}$x+$\root{3}{2}$)100展开式所得的x的多项式中,系数为有理数的项有( )
| A. | 16项 | B. | 17项 | C. | 24项 | D. | 50项 |
10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于( )
| A. | $\frac{\sqrt{10}}{5}$ | B. | -$\frac{\sqrt{10}}{5}$ | C. | $\frac{\sqrt{15}}{5}$ | D. | -$\frac{\sqrt{15}}{5}$ |
11.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2-x,则$f({-\frac{5}{2}})$=( )
| A. | $-\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |