题目内容

3.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

分析 先求出f(3$\sqrt{3}$)=-$\frac{4}{3}$,从而$f[{f({3\sqrt{3}})}]$=f(-$\frac{4}{3}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,
∴f(3$\sqrt{3}$)=$\frac{1}{6}-lo{g}_{3}3\sqrt{3}$=$\frac{1}{6}-\frac{3}{2}$=-$\frac{4}{3}$,
$f[{f({3\sqrt{3}})}]$=f(-$\frac{4}{3}$)=sin([$\frac{π}{2}×(-\frac{4}{3})$]=-sin$\frac{2π}{3}$=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
故答案为:$-\frac{{\sqrt{3}}}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网