题目内容
证明下列不等式:(1)a,b都是正数,且a+b=1,求证:(1+
| 1 |
| a |
| 1 |
| b |
(2)设实数x,y满足y+x2=0,且0<a<1,求证:loga(ax+ay)<
| 1 |
| 8 |
分析:(1)由题设知左=(1+
)(1+
)=(2+
)(2+
)=5+2(
+
)≥9.
(2)由题设知ax+ay≥2
,由0<a<1,知loga(ax+ay)≤loga2
=
logaax+y+loga2=
(x+y)+loga2,由此能够证明loga(ax+ay)<
+loga2.
| a+b |
| a |
| a+b |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
(2)由题设知ax+ay≥2
| ax+y |
| ax+y |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
解答:证明(1)左=(1+
)(1+
)=(2+
)(2+
)=5+2(
+
)(3分)
因为a>0,b>0,所以
+
≥2(5分)
所以左=(1+
)(1+
)=(2+
)(2+
)=5+2(
+
)≥9(7分)
(2)∵ax>0,ay>0,
∴ax+ay≥2
(9分)
又∵0<a<1,
∴loga(ax+ay)≤loga2
=
logaax+y+loga2=
(x+y)+loga2(12分)
因为y+x2=0,
∴loga(ax+ay)=
(x-x2)+loga2=-
(x-
)2+
+loga2≤
+loga2
即原不等式得证..(14分)
| a+b |
| a |
| a+b |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
因为a>0,b>0,所以
| b |
| a |
| a |
| b |
所以左=(1+
| a+b |
| a |
| a+b |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
(2)∵ax>0,ay>0,
∴ax+ay≥2
| ax+y |
又∵0<a<1,
∴loga(ax+ay)≤loga2
| ax+y |
| 1 |
| 2 |
| 1 |
| 2 |
因为y+x2=0,
∴loga(ax+ay)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 8 |
即原不等式得证..(14分)
点评:本题考查不等式的证明,解题时要注意均值不等式的合理运用.
练习册系列答案
相关题目