题目内容
证明下列不等式:
(1)对任意的正实数a,b,有
≥
-
;
(2)
•
+
•
+
•
+…+
•
≥
,n∈N.
(1)对任意的正实数a,b,有
| 1 |
| 1+a |
| 1 |
| 1+b |
| a-b |
| (1+b)2 |
(2)
| C | 0 n |
| 50 |
| 50+1 |
| C | 1 n |
| 51 |
| 51+1 |
| C | 2 n |
| 52 |
| 52+1 |
| C | n n |
| 5n |
| 5n+1 |
| 2n•5n |
| 3n+5n |
分析:(1)利用作差法证明即可;
(2)令a=
,可知
≥
-
(k=0,1,2,…,n)⇒
•
≥
•
-
,利用组合数的性质可证得右端=
-
[(1+
)n-b•2n],再令b=(
)n,可证左端
•
≥
-
[(1+
)n-(
)n]=
=
,从而可使结论得证.
(2)令a=
| 1 |
| 5k |
| 1 | ||
1+
|
| 1 |
| 1+b |
| ||
| (1+b)2 |
| n |
| k=0 |
| C | k n |
| 1 | ||
1+
|
| n |
| k=0 |
| C | k n |
| 1 |
| 1+b |
| n |
| k=0 |
| ||
| (1+b)2 |
| 2n |
| 1+b |
| 1 |
| (1+b)2 |
| 1 |
| 5 |
| 3 |
| 5 |
| n |
| k=0 |
| C | k n |
| 1 | ||
1+
|
| 2n | ||
1+
|
| 1 | ||
(1+
|
| 1 |
| 5 |
| 6 |
| 5 |
| 2n | ||
1+
|
| 2n•5n |
| 5n+3n |
解答:证明:(1)∵
-
+
=
+
=
,
∵a>0,b>0,
∴
≥0,
故
≥
-
;
(2)令a=
,k=0,1,2,…,n.由(1)得:
≥
-
,k=0,1,2,…,n
∴
•
≥
•
-
•
,k=0,1,2,…,n
∴
•
≥
•
-
=
-
(
-b)
=
-
(
•
-b
)
=
-
[(1+
)n-b•2n],
令b=(
)n,
则
•
≥
-
[(1+
)n-(
)n]=
=
,
即
•
+
•
+
•
+…+
•
≥
,n∈N.
| 1 |
| 1+a |
| 1 |
| 1+b |
| a-b |
| (1+b)2 |
| b-a |
| (1+a)(1+b) |
| a-b |
| (1+b)2 |
| (b-a)2 |
| (1+a)(1+b)2 |
∵a>0,b>0,
∴
| (b-a)2 |
| (1+a)(1+b)2 |
故
| 1 |
| 1+a |
| 1 |
| 1+b |
| a-b |
| (1+b)2 |
(2)令a=
| 1 |
| 5k |
| 1 | ||
1+
|
| 1 |
| 1+b |
| ||
| (1+b)2 |
∴
| C | k n |
| 1 | ||
1+
|
| C | k n |
| 1 |
| 1+b |
| C | k n |
| ||
| (1+b)2 |
∴
| n |
| k=0 |
| C | k n |
| 1 | ||
1+
|
| n |
| k=0 |
| C | k n |
| 1 |
| 1+b |
| n |
| k=0 |
| ||
| (1+b)2 |
=
| 1 |
| 1+b |
| n |
| k=0 |
| C | k n |
| 1 |
| (1+b)2 |
| n |
| k=0 |
| C | k n |
| 1 |
| 5k |
=
| 2n |
| 1+b |
| 1 |
| (1+b)2 |
| n |
| k=0 |
| C | k n |
| 1 |
| 5k |
| n |
| k=0 |
| C | k n |
=
| 2n |
| 1+b |
| 1 |
| (1+b)2 |
| 1 |
| 5 |
令b=(
| 3 |
| 5 |
则
| n |
| k=0 |
| C | k n |
| 1 | ||
1+
|
| 2n | ||
1+
|
| 1 | ||
(1+
|
| 1 |
| 5 |
| 6 |
| 5 |
| 2n | ||
1+
|
| 2n•5n |
| 5n+3n |
即
| C | 0 n |
| 50 |
| 50+1 |
| C | 1 n |
| 51 |
| 51+1 |
| C | 2 n |
| 52 |
| 52+1 |
| C | n n |
| 5n |
| 5n+1 |
| 2n•5n |
| 3n+5n |
点评:本题考查不等式的证明,着重考查等价转化思想与抽象思维、逻辑推理能力,属于难题.
练习册系列答案
相关题目