题目内容
【题目】选修4-5:不等式选讲
定义在
上的函数
,若
,有
,则称函数
为定义在
上的非严格单增函数;若
,有
,则称函数
为定义在
上的非严格单减函数.已知:
.
(1)若函数
为定义在
上的非严格单增函数,求实数
的取值范围.
(2)若函数
为定义在
上的非严格单减函数,试解不等式
.
【答案】(1)
;(2)当
时,不等式
的解集为:;当
时,不等式
的解集为:
.
【解析】试题分析:(1)讨论
与2的大小,去绝对值符号,把
写成分段函数,根据题目定义即可得解(2)函数
为定义在
上的非严格单减函数,由(1)知
,且
.
所以,当
时,
不等式
的解集为:;当
时,不等式
,即
或
或
解得x的范围即得解.
试题解析:
(1)当
时,
;
当
时,
;
当
时,
.
因为
为定义在
上的非严格单增函数,根据定义,可得:
.
(2)函数
为定义在
上的非严格单减函数,由(1)知
,且
.
所以,当
时,
不等式
的解集为:;
当
时,不等式
,即
或
或
解得
或
即
所以
的解集为:
.
练习册系列答案
相关题目
【题目】有一个容量为60的样本(60名学生的数学考试成绩),分组情况如表:
分组 | 0.5~20.5 | 20.5~40.5 | 40.5~60.5 | 60.5~80.5 | 80.5~100.5 |
频数 | 3 | 6 | 12 | ||
频率 | 0.3 |
![]()
(1)填出表中所剩的空格;
(2)画出频率分布直方图.