题目内容
【题目】已知各项均不相等的等差数列
的前五项和
,且
成等比数列.
(1)求数列
的通项公式;
(2)若
为数列
的前
项和,且存在
,使得
成立,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】试题分析:(1)用基本量法,即用
表示已知条件,列出方程组,求出
即可求数列
的通项公式;(2)用裂项相消法求数列
的前
项和
,列出不等式参变分离得
,由基本不等式求
的最小值即可.
试题解析: (1)设数列
的公差为
,则
即
………………2分
又因为
,所以
………………4分
所以
.………………5分
(2)因为
,
所以
.………………7分
因为存在
,使得
成立,
所以存在
,使得
成立,
即存在
,使
成立.………………9分
又
,
(当且仅当
时取等号),
所以
.
即实数
的取值范围是
.………………12分
【题目】某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区: | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地区: | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):
![]()
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(
吨)与相应的生产能耗
(吨)标准煤的几组对照数据:
| 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 |
![]()
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式
,
)