题目内容
本题满分14分)如图,在三棱锥中,,为的中点,⊥平面,垂足落在线段上.(Ⅰ)证明:⊥;(Ⅱ)已知,,,.求二面角的大小.
略
解析
(本题满分14分)
如图,在直三棱柱中,,,求二面角的大小.
(本题满分14分)如图,在中,,垂足为,且
.
(Ⅰ)求的大小;
(Ⅱ)设为的中点,已知的面积为15,求的长
如图,已知是棱长为的正方体,点在上,点在上,且.
(1)求证:四点共面;(4分)
(2)若点在上,,点在上,,垂足为,求证:平面;(4分)
(3)用表示截面和侧面所成的锐二面角的大小,求.(4分
(本题满分14分)如图,抛物线的焦点为F,椭圆 的离心率,C1与C2在第一象限的交点为
(1)求抛物线C1及椭圆C2的方程;
(2)已知直线与椭圆C2交于不同两点A、B,点M满足,直线FM的斜率为k1,试证明
如图所示,已知曲线与曲线交于点O、A,直线(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式;
(2)求函数在区间上的最大值。