题目内容
直线在平面内,可以记作( )
A. B. C. D.
点M(χ0,)是抛物线χ2=2P(P>0)上一点, 若点M到该抛物线的焦点的距离为2,
则点M到坐标原点的距离为( )
A、 B、 C、 D、
树德中学的机器人代表队在刚结束的全国总决赛中脱颖而出,取得控制奖全国第一的骄人成绩.该代表队由高二的三名男生和一名女生以及高一的两名男生组成.
(1)在赛后的颁奖典礼上,这六位同学排成一排拍照留念,要求女生不站两边,且高一的两名男生不相邻,则这样的排法有多少种?
(2)在赛前的宣传活动中,主办方准备将5份不同的宣传资料全部分发给高二的三名男生,则这三个男生每人至少拿到一份的概率为多少?
“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.
执行如图所示的程序框图,若输入,则输出( )
在频率分布直方图中,小矩形的面积表示
A.频率/样本容量 B.组距×频率 C.频率 D.频率/组距
(本题满分12分) 已知函数f(x)= sinx?cosx-cos2x+.
(Ⅰ)化简函数f(x),并用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
(Ⅱ)当时,求函数的最大值和最小值及相应的的值.
(本题满分12分)设函数f(x)= .
(1)求函数f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围
若关于x的不等式x2+x-≥0对任意n∈N*在x∈(-∞,λ]上恒成立,则实常数λ的取值范围是________.