题目内容
求sin220°+cos280°+思路分析:思路1——见到平方式就降幂;思路2——拆角80°=60°+20°;思路3——构造对偶式.
解法1:原式=
(1-cos40°)+
(1+cos160°)+
(sin100°-sin60°)
=1+
(cos160°-cos40°)+
sin100°![]()
=
-sin100°sin60°+
sin100°
=
.
解法2:原式=sin220°+cos2(60°+20°)+
sin20°cos(60°+20°)
=sin220°+(
cos20°-
sin20°)+3sin20°(
cos20°-
sin20°)
=
sin220°+
cos220°=
.
解法3:令M=sin220°+cos280°+
sin20°cos80°,
则其对偶式N=cos220°+sin280°+
cos20°sin80°.
因为M+N=(sin220°+cos220°)+(cos280°+sin280°)+
(sin20°cos80°+cos20°sin80°)
=2+
sin100°,①
M-N=(sin220°-cos220°)+(cos280°-sin280°)+
(sin20°cos80°-cos20°sin80°)
=-cos40°+cos160°-
sin60°
=-2sin100°sin60°-![]()
=-
sin100°-
,②
所以①+②得2M=
,M=
,
即sin220°+cos280°+
sin20°cos80°的值为
.
练习册系列答案
相关题目