题目内容
如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A'.求证:A'D⊥EF
(2)当BE=BF=
BC时,求三棱锥A'-EFD的体积.

(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A'.求证:A'D⊥EF
(2)当BE=BF=
| 1 |
| 4 |
(1)由正方形ABCD知,∠DCF=∠DAE=90°,
∴A'D⊥A'F,A'D⊥A'E,
∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.
∴A'D⊥平面A'EF.
又∵EF?平面A'EF,
∴A'D⊥EF.
(2)由四边形ABCD为边长为2的正方形
故折叠后A′D=2,A′E=A′F=
,EF=
则cos∠EA′F=
=
则sin∠EA′F=
故△EA′F的面积S△EA′F=
•A′E•A′F•sin∠EA′F=
由(1)中A′D⊥平面A′EF
可得三棱锥A'-EFD的体积V=
×
×2=
.
∴A'D⊥A'F,A'D⊥A'E,
∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.
∴A'D⊥平面A'EF.
又∵EF?平面A'EF,
∴A'D⊥EF.
(2)由四边形ABCD为边长为2的正方形
故折叠后A′D=2,A′E=A′F=
| 3 |
| 2 |
| ||
| 2 |
则cos∠EA′F=
(
| ||||
2×
|
| 8 |
| 9 |
则sin∠EA′F=
| ||
| 9 |
故△EA′F的面积S△EA′F=
| 1 |
| 2 |
| ||
| 8 |
由(1)中A′D⊥平面A′EF
可得三棱锥A'-EFD的体积V=
| 1 |
| 3 |
| ||
| 8 |
| ||
| 12 |
练习册系列答案
相关题目