题目内容
5.已知f(x)=$\left\{\begin{array}{l}{2x,(x>0)}\\{f(x+1),(x<0)}\end{array}\right.$,则f(-$\frac{4}{3}$)+f($\frac{4}{3}$)等于4.分析 利用分段函数,结合函数的周期,求解函数值即可.
解答 解:f(x)=$\left\{\begin{array}{l}{2x,(x>0)}\\{f(x+1),(x<0)}\end{array}\right.$,则f(-$\frac{4}{3}$)+f($\frac{4}{3}$)=f($-\frac{4}{3}$+2)+2×$\frac{4}{3}$=f($\frac{2}{3}$)+$\frac{8}{3}$=2×$\frac{2}{3}$$+\frac{8}{3}$=4.
故答案为:4.
点评 本题考查分段函数的应用,考查计算能力.
练习册系列答案
相关题目
16.在△ABC中角A,B,C所对的边分别为a,b,c,满足ccosB+(b-2a)cosC=0.且c=2$\sqrt{3}$
(1)求角C的大小;
(2)求△ABC面积最大值,并判断此时△ABC的形状.
(1)求角C的大小;
(2)求△ABC面积最大值,并判断此时△ABC的形状.
13.复数z=1-2i(i为虚数单位)在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.已知双曲线y2-$\frac{x^2}{a^2}$=1(a>0)的渐进线与圆(x-1)2+y2=$\frac{3}{4}$相切,则a=( )
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
17.设a,b,c∈R且a>b,则下列选项中正确的是( )
| A. | ac>bc | B. | a2>b2 | C. | a3>b3 | D. | $\frac{1}{a}>\frac{1}{b}$ |
14.已知正项等比数列{an}中,a1a5=9,S3=$\frac{21}{4}$,则log2a10的值为( )
| A. | 8 | B. | 8+log23 | C. | 9+log23 | D. | 7+log23 |