题目内容
P(x,y)满足
,则z=2x-y的最大值为( )
|
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点C时,直线y=2x-z的截距最小,
此时z最大.
由
,解得
,即C(1,1)
将C(1,1)的坐标代入目标函数z=2x-y,
得z=2-1=1.即z=2x-y的最大值为1.
故选:B.
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点C时,直线y=2x-z的截距最小,
此时z最大.
由
|
|
将C(1,1)的坐标代入目标函数z=2x-y,
得z=2-1=1.即z=2x-y的最大值为1.
故选:B.
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目