题目内容

设x=1和x=2是函数f(x)=alnx+bx2+x的两个极值点
(1)求a,b的值;
(2)求f(x)的单调区间.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)清楚函数的导数,利用函数的极值点,得到a、b的关系式,即可求a,b的值;
(2)利用函数的导数大于0,得到不等式,求解即可得到函数的单调增区间,函数的单调减区间.
解答: 解:(1)函数f(x)=alnx+bx2+x,∴f′(x)=
a
x
+2bx+1,
∵x=1和x=2是函数f(x)=alnx+bx2+x的两个极值点,
∴f′(1)=0,f′(2)=0,
可得:
a+2b+1=0
1
2
a+4b+1=0
,解得
a=-
2
3
b=-
1
6

(2)令f′(x)=
-2
3x
-
1
3
x+1>0,(x>0),即x2-3x+2<0,(x>0),可得1<x<2
∴f(x)在(2,+∞)及(0,1)上是减函数,在(1,2)上为增函数.
点评:本题考查函数的导数的应用,极值的求法单调区间的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网