题目内容
已知△ABC的两边长分别为AB=25,AC=39,且O为△ABC外接圆的圆心.(注:39=3×13,65=5×13)
(1)若外接圆O的半径为
,且角B为钝角,求BC边的长;
(2)求
•
的值.
(1)若外接圆O的半径为
| 65 |
| 2 |
(2)求
| AO |
| BC |
(1)由正弦定理有
=
=2R(R为外接圆半径),
∴
=
=65,
∴sinB=
,sinC=
,又B为钝角,
∴cosC=
,cosB=-
,
∴sin(B+C)=sinBcosC+cosBsinC=
×
+
×(-
)=
,
又
=2R,∴BC=2RsinA=65sin(B+C)=16;
(2)由已知得:
+
=
,∴(
+
)2=
2,
即|
|2+2
•
+|
|2=|
|2=392,
同理
+
=
,∴|
|2+2
•
+|
|2=|
|2=252,
两式相减得:2
•
-2
•
=(39+25)(39-25)=896,
即2
•
=896,
则
•
=448.
| AB |
| sinC |
| AC |
| sinB |
∴
| 25 |
| sinC |
| 39 |
| sinB |
∴sinB=
| 3 |
| 5 |
| 5 |
| 13 |
∴cosC=
| 12 |
| 13 |
| 4 |
| 5 |
∴sin(B+C)=sinBcosC+cosBsinC=
| 3 |
| 5 |
| 12 |
| 13 |
| 5 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
又
| BC |
| sinA |
(2)由已知得:
| AO |
| OC |
| AC |
| AO |
| OC |
| AC |
即|
| AO |
| AO |
| OC |
| OC |
| AC |
同理
| AO |
| OB |
| AB |
| AO |
| AO |
| OB |
| OB |
| AB |
两式相减得:2
| AO |
| OC |
| AO |
| OB |
即2
| AO |
| BC |
则
| AO |
| BC |
练习册系列答案
相关题目
已知△ABC的两边长分别为AB=25,AC=39,且O为△ABC外接圆的圆心.(注:39=3×13,65=5×13)
(1)若外接圆O的半径为
,且角B为钝角,求BC边的长;
(2)求
•
的值.
(1)若外接圆O的半径为
| 65 |
| 2 |
(2)求
| AO |
| BC |