题目内容
已知△ABC的两边长分别为AB=25,AC=39,且O为△ABC外接圆的圆心.(注:39=3×13,65=5×13)
(1)若外接圆O的半径为
,且角B为钝角,求BC边的长;
(2)求
•
的值.
(1)若外接圆O的半径为
| 65 |
| 2 |
(2)求
| AO |
| BC |
分析:(1)由正弦定理求得sinB=
,sinC=
,从而求得 cosC=
,cosB=-
.再利用两角和的正弦公式求得 sin(B+C) 的值,利用正弦定理求得BC的值.
(2)把
+
=
平方,再把
+
=
平方,相减可得 2
•
-2
•
=896,即 2
•
=896,从而求得
•
的值.
| 3 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
| 4 |
| 5 |
(2)把
| AO |
| OC |
| AC |
| AO |
| OB |
| AB |
| AO |
| OC |
| AO |
| OB |
| AO |
| BC |
| AO |
| BC |
解答:解:(1)由正弦定理有
=
=2R,把AB=25,AC=39,外接圆O的半径为
,且角B为钝角代入求得sinB=
,sinC=
,
∴cosC=
,cosB=-
,∴sin(B+C)=sinBcosC+cosBsinC=
.
再由
=2R,∴BC=2RsinA=65sin(B+C)=16.
(2)∵
+
=
,∴
2+
2+2
•
=
2=392,
同理,
+
=
,∴
2+
2+2
•
=
2=252,
两式相减可得 2
•
-2
•
=896,
即 2
•
=896,∴
•
=448.
| AB |
| sinC |
| AC |
| sinB |
| 65 |
| 2 |
| 3 |
| 5 |
| 5 |
| 13 |
∴cosC=
| 12 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
再由
| BC |
| sinA |
(2)∵
| AO |
| OC |
| AC |
| AO |
| OC |
| AO |
| OC |
| AC |
同理,
| AO |
| OB |
| AB |
| AO |
| OB |
| AO |
| OB |
| AB |
两式相减可得 2
| AO |
| OC |
| AO |
| OB |
即 2
| AO |
| BC |
| AO |
| OB |
点评:本题主要考查两个向量的数量积的定义,正弦定理、两角和的正弦公式的应用,属于中档题.
练习册系列答案
相关题目