ÌâÄ¿ÄÚÈÝ
10£®£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÇóÖ¤£ºÖ±ÏßCDµÄбÂÊΪ¶¨Öµ£®
·ÖÎö £¨1£©½«µãA´úÈëÍÖÔ²·½³Ì£¬e=$\frac{c}{a}=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}=\frac{\sqrt{2}}{2}$£¬ÁªÁ¢ÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©¸ù¾Ý¶Ô³ÆÐÔÇóµÃBµã×ø±ê£¬$\overrightarrow{AP}$=${¦Ë}_{1}\overrightarrow{PC}$£¬$\overrightarrow{BP}={¦Ë}_{2}\overrightarrow{PD}$£¬ÇóµÃx1ºÍy1£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ$£¨{¦Ë}_{1}+1£©•18{t}^{2}={¦Ë}_{1}-1$£¬Í¬ÀíÇóµÃ£¨¦Ë2+1£©•18t2=¦Ë2-1£¬Á½Ê½Ïà¼õÇóµÃ¦Ë1=¦Ë2£¬Òò´Ë¿ÉÖ¤Ã÷CD¡ÎAB£¬½øÒ»²½Çó³öÖ±ÏßABµÄбÂÊ£¬Ôò½áÂÛ¿ÉÖ¤£®
½â´ð £¨1£©½â£º½«µãA´úÈëÍÖÔ²·½³ÌµÃ£º$\frac{£¨\frac{1}{3}£©^{2}}{{a}^{2}}+\frac{£¨\frac{2}{3}£©^{2}}{{b}^{2}}=1$£¬ÇÒe=$\frac{c}{a}=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}=\frac{\sqrt{2}}{2}$£¬
½âµÃ£ºa2=1£¬${b}^{2}=\frac{1}{2}$£¬
¡àÍÖÔ²EµÄ·½³ÌΪ£ºx2+2y2=1£»
£¨2£©Ö¤Ã÷£º¡ßA£¨$\frac{1}{3}$£¬$\frac{2}{3}$£©£¬¡àB£¨-$\frac{1}{3}$£¬-$\frac{2}{3}$£©£¬
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬$\overrightarrow{AP}$=${¦Ë}_{1}\overrightarrow{PC}$£¬$\overrightarrow{BP}={¦Ë}_{2}\overrightarrow{PD}$£¬ÆäÖУº¦Ë1£¬¦Ë2¡Ê£¨0£¬1£©£¬
Ôò$\left\{\begin{array}{l}{{x}_{1}=\frac{£¨{¦Ë}_{1}+1£©£¨-4t£©-\frac{1}{3}}{{¦Ë}_{1}}}\\{{y}_{1}=\frac{£¨{¦Ë}_{1}+1£©t-\frac{2}{3}}{{¦Ë}_{1}}}\end{array}\right.$£¬´úÈëÍÖÔ²·½³Ì²¢ÕûÀíµÃ£¬$£¨{¦Ë}_{1}+1£©•18{t}^{2}={¦Ë}_{1}-1$£¬
ͬÀíµÃ£¬£¨¦Ë2+1£©•18t2=¦Ë2-1£¬
Á½Ê½Ïà¼õµÃ£º£¨¦Ë1-¦Ë2£©•£¨18t2-1£©=0£®
¡ßµãP£¨-4t£¬t£©ÔÚÍÖÔ²EÄÚ²¿£¬
¡à18t2£¼1£¬
¡à¦Ë1=¦Ë2£¬
¡àCD¡ÎAB£®
ÓÖ${k}_{AB}=\frac{-\frac{2}{3}-\frac{2}{3}}{-\frac{1}{3}-\frac{1}{3}}=2$£®
¡àÖ±ÏßCDµÄбÂÊΪ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÇóÍÖÔ²µÄ·½³Ì£¬ÀûÓÃÏòÁ¿¹²Ïß¶¨ÀíÖ¤Ã÷Á½Ö±Ï߯½ÐУ¬µãµÄ¶Ô³ÆÐÔ£¬¿¼²é×ۺϷÖÎöÎÊÌâ¼°½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\sqrt{3}$ | B£® | $\sqrt{5}$ | C£® | $2\sqrt{2}$ | D£® | $2\sqrt{3}$ |
| A£® | 2+$\sqrt{2}$ | B£® | 2-$\sqrt{2}$ | C£® | 2 | D£® | 2$\sqrt{2}$ |