题目内容
15.定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+ex<1成立的x的取值范围为( )| A. | (0,+∞) | B. | (-∞,0) | C. | (-1,+∞) | D. | (-∞,1) |
分析 构造函数:g(x)=$\frac{f(x)-1}{{e}^{x}}$,g(0)=$\frac{0-1}{{e}^{0}}$=-1.对任意x∈R,都有f(x)>f'(x)+1,可得g′(x)=$\frac{{f}^{′}(x)+1-f(x)}{{e}^{x}}$<0,函数g(x)在R单调递减,利用其单调性即可得出.
解答 解:构造函数:g(x)=$\frac{f(x)-1}{{e}^{x}}$,g(0)=$\frac{0-1}{{e}^{0}}$=-1.
∵对任意x∈R,都有f(x)>f'(x)+1,
∴g′(x)=$\frac{{f}^{′}(x){e}^{x}-[f(x)-1]{e}^{x}}{({e}^{x})^{2}}$=$\frac{{f}^{′}(x)+1-f(x)}{{e}^{x}}$<0,
∴函数g(x)在R单调递减,
由f(x)+ex<1化为:g(x)=$\frac{f(x)-1}{{e}^{x}}$<-1=g(0),
∴x>0.
∴使得f(x)+ex<1成立的x的取值范围为(0,+∞).
故选:A.
点评 本题考查了构造函数法、利用导数研究函数的单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
9.当$\frac{2}{3}$<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,抛物线C:y2=8ax的焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是( )
| A. | (1,2) | B. | (1,$\frac{3\sqrt{2}}{4}$] | C. | (2,+∞) | D. | [$\frac{3\sqrt{2}}{4}$,+∞) |