题目内容
若数列{an}是正项数列,且
+
+…+
=n2+3n(n∈N*),则
+
+…+
=______.
| a1 |
| a2 |
| an |
| a1 |
| 2 |
| a2 |
| 3 |
| an |
| n+1 |
令n=1,得
=4,∴a1=16.
当n≥2时,
+
+…+
=(n-1)2+3(n-1).
与已知式相减,得
=(n2+3n)-(n-1)2-3(n-1)=2n+2,
∴an=4(n+1)2,n=1时,a1适合an.
∴an=4(n+1)2,
∴
=4n+4,
∴
+
++
=
=2n2+6n.
故答案为2n2+6n
| a1 |
当n≥2时,
| a1 |
| a2 |
| an-1 |
与已知式相减,得
| an |
∴an=4(n+1)2,n=1时,a1适合an.
∴an=4(n+1)2,
∴
| an |
| n+1 |
∴
| a1 |
| 2 |
| a2 |
| 3 |
| an |
| n+1 |
| n(8+4n+4) |
| 2 |
故答案为2n2+6n
练习册系列答案
相关题目