题目内容

13.已知复数z=$\frac{2i}{{1+\sqrt{3}\;i}}$(i为虚数单位),$\overline{z}$表示z的共轭复数,则z•$\overline{z}$=1.

分析 利用复数代数形式的乘除运算化简z,再由$z•\overline{z}=|z{|}^{2}$求得z•$\overline{z}$.

解答 解:∵z=$\frac{2i}{{1+\sqrt{3}\;i}}$=$\frac{2i(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}=\frac{2\sqrt{3}+2i}{4}=\frac{\sqrt{3}}{2}+\frac{i}{2}$,
∴z•$\overline{z}$=$|z{|}^{2}=(\frac{\sqrt{3}}{2})^{2}+(\frac{1}{2})^{2}=1$.
故答案为:1.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网