题目内容
已知f(x)=logax(a>1)的导函数是f′(x),记A=f′(a),B=f(a+1)-f(a),C=f′(a+1)则( )
| A.A>B>C | B.A>C>B | C.B>A>C | D.C>B>A |
记M(a,f(a)),N(a+1,f(a+1)),
则由于B=f(a+1)-f(a)=
,表示直线MN的斜率;
A=f′(a)表示函数f(x)=logax在点M处的切线斜率;
C=f′(a+1)表示函数f(x)=logax在点N处的切线斜率.
所以,A>B>C.
故选A
则由于B=f(a+1)-f(a)=
| f(a+1)-f(a) |
| (a+1)-a |
A=f′(a)表示函数f(x)=logax在点M处的切线斜率;
C=f′(a+1)表示函数f(x)=logax在点N处的切线斜率.
所以,A>B>C.
故选A
练习册系列答案
相关题目
已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log
x,那么f(-
)的值是( )
| 1 |
| 4 |
| 1 |
| 2 |
A、
| ||
B、-
| ||
| C、2 | ||
| D、-2 |