题目内容
(1)设{an}是等差数列,求证:以bn=
(n∈N*)为通项公式的数列{bn}是等差数列.
(2)已知
,
,
成等差数列,求证
,
,
也成等差数列.
| a1+a2+…+an |
| n |
(2)已知
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| b+c |
| a |
| a+c |
| b |
| a+b |
| c |
分析:(1)由{an}是等差数列,可得an+1-an=d常数,a1+a2+…+an=
.
于是bn=
=
,只要证明bn+1-bn为常数即可.
(2)由
,
,
成等差数列,可得
=
+
,即b=
.只要证明
-
-
=0即可.
| n(a1+an) |
| 2 |
于是bn=
| ||
| n |
| a1+an |
| 2 |
(2)由
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| b |
| 1 |
| a |
| 1 |
| c |
| 2ac |
| a+c |
| 2(a+c) |
| b |
| b+c |
| a |
| a+b |
| c |
解答:证明:(1)∵{an}是等差数列,∴an+1-an=d常数,a1+a2+…+an=
.
∵bn=
=
,
∴bn+1-bn=
-
=
=
d为常数,
∴数列{bn}是等差数列.
(2)∵
,
,
成等差数列,∴
=
+
,∴b=
.
∴
-
-
=
-
=
=0.
∴
=
+
.
∴
,
,
也成等差数列.
| n(a1+an) |
| 2 |
∵bn=
| ||
| n |
| a1+an |
| 2 |
∴bn+1-bn=
| a1+an+1 |
| 2 |
| a1+an |
| 2 |
| an+1-an |
| 2 |
| 1 |
| 2 |
∴数列{bn}是等差数列.
(2)∵
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 2 |
| b |
| 1 |
| a |
| 1 |
| c |
| 2ac |
| a+c |
∴
| 2(a+c) |
| b |
| b+c |
| a |
| a+b |
| c |
| (a+c)2 |
| ac |
| b(a+c)+a2+c2 |
| ac |
| (a+c)2-(2ac+a2+c2) |
| ac |
∴
| 2(a+c) |
| b |
| b+c |
| a |
| a+b |
| c |
∴
| b+c |
| a |
| a+c |
| b |
| a+b |
| c |
点评:熟练掌握等差数列定义、通项公式及其前n项和公式是解题的关键.
练习册系列答案
相关题目