题目内容
7.已知tanα=2,α为第一象限角,则sin2α的值为( )| A. | $-\frac{3}{5}$ | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
分析 由条件利用同角三角函数的基本关系求得sinα、cosα的值,再利用二倍角公式,求得sin2α的值.
解答 解:由tanα=2=$\frac{sinα}{cosα}$,α为第一象限角,sin2α+cos2α=1,
∴$sinα=\frac{2}{{\sqrt{5}}}$,$cosα=\frac{1}{{\sqrt{5}}}$,所以$sin2α=2•\frac{2}{{\sqrt{5}}}•\frac{1}{{\sqrt{5}}}=\frac{4}{5}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
练习册系列答案
相关题目
2.将函数f(x)=sin(2x+φ)$(|φ|<\frac{π}{2})$的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在$[0,\frac{π}{2}]$上的最小值为( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
12.设集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,则P∩Q=( )
| A. | $(-4,\frac{1}{9})$ | B. | $(\frac{1}{9},2]$ | C. | $(\frac{1}{3},2]$ | D. | $(\frac{1}{3},2)$ |