题目内容
设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围( )
A.k<
| B.0<k≤
| C.0≤k≤
| D.k≤
|
f'(x)=3kx2+6(k-1)x,
∵函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,
∴f'(x)=3kx2+6(k-1)x≤0在区间(0,4)上恒成立
当k=0时,成立
k>0时,f'(4)=12k+6(k-1)×4≤0,即0<k≤
k<0时,f'(4)=12k+6(k-1)×4≤0,f'(0)≤0,k<0
故k的取值范围是k≤
故选D.
∵函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,
∴f'(x)=3kx2+6(k-1)x≤0在区间(0,4)上恒成立
当k=0时,成立
k>0时,f'(4)=12k+6(k-1)×4≤0,即0<k≤
| 1 |
| 3 |
k<0时,f'(4)=12k+6(k-1)×4≤0,f'(0)≤0,k<0
故k的取值范围是k≤
| 1 |
| 3 |
故选D.
练习册系列答案
相关题目