题目内容
在直角坐标系
中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与轨迹C交于A,B两点.
(Ⅰ)写出轨迹C的方程; (Ⅱ)若![]()
![]()
,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有|
|>|
|
【答案】
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以
为焦点,长半轴为2的椭圆.它的短半轴
,故曲线C的方程为
.
………………4分
(Ⅱ)设
,其坐标满足![]()
消去y并整理得
,故
.
若
,即
.而
,
于是
,化简得
,所以
.
(Ⅲ)![]()
![]()
![]()
.因为A在第一象限,故
.由
知
,从而
.又
,故
,即在题设条件下,恒有
.
【解析】略
练习册系列答案
相关题目