题目内容
(本小题满分12分)
在直角坐标系
中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若![]()
![]()
,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有|
|>|
|.
(Ⅰ)
,(Ⅱ)略.
解析:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以
为焦点,长半轴为2的椭圆.它的短半轴
,
故曲线C的方程为
.·································································· 3分
(Ⅱ)设
,其坐标满足
![]()
消去y并整理得
,
故
.························································· 5分
若
,即
.
而
,
于是
,
化简得
,所以
.····························································· 8分
(Ⅲ)![]()
![]()
![]()
.
因为A在第一象限,故
.由
知
,从而
.又
,
故
,
即在题设条件下,恒有
.···························································· 12分
练习册系列答案
相关题目