题目内容
13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为( )| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{3\sqrt{3}}{10}$ |
分析 设椭圆的左、右焦点分别为F1(-c,0),F2(c,0),设x=-c,代入椭圆方程,求得A的坐标,设出C(x,y),由△ABF2的面积是△BCF2的面积的2倍,可得$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,运用向量的坐标运算可得x,y,代入椭圆方程,运用离心率公式,解方程即可得到所求值.
解答 解:设椭圆的左、右焦点分别为F1(-c,0),F2(c,0),
由x=-c,代入椭圆方程可得y=±$\frac{{b}^{2}}{a}$,
可设A(-c,$\frac{{b}^{2}}{a}$),C(x,y),
由△ABF2的面积是△BCF2的面积的2倍,
可得$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,
即有(2c,-$\frac{{b}^{2}}{a}$)=2(x-c,y),
即2c=2x-2c,-$\frac{{b}^{2}}{a}$=2y,
可得x=2c,y=-$\frac{{b}^{2}}{2a}$,
代入椭圆方程可得,$\frac{4{c}^{2}}{{a}^{2}}$+$\frac{{b}^{2}}{4{a}^{2}}$=1,
由e=$\frac{c}{a}$,b2=a2-c2,
即有4e2+$\frac{1}{4}$-$\frac{1}{4}$e2=1,
解得e=$\frac{\sqrt{5}}{5}$.
故选:A.
点评 本题考查椭圆的离心率的求法,注意运用椭圆的方程和向量的共线的坐标表示,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
3.若A,B,C为圆O:x2+y2=1上的三点,且AB=1,BC=2,则$\overrightarrow{BO}$•$\overrightarrow{AC}$=( )
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{2}$ |
1.已知a∈R,则“a<1”是“|x-2|+|x|>a恒成立”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
2.已知e为自然对数的底数,若对任意的x∈[$\frac{1}{e}$,1],总存在唯一的y∈[-1,1],使得lnx-x+1+a=y2ey成立,则实数a的取值范围是( )
| A. | [$\frac{1}{e}$,e] | B. | ($\frac{2}{e}$,e] | C. | ($\frac{2}{e}$,+∞) | D. | ($\frac{2}{e}$,e+$\frac{1}{e}$) |
3.某种商品进价为600元,标价900元,现在商店准备打折销售,但要保证利润不低于120元,则至少可以打( )折?
| A. | 6折 | B. | 7折 | C. | 8折 | D. | 9折 |