题目内容
某次象棋比赛的决赛在甲乙两名棋手之间进行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往经验,每局甲赢的概率为
,乙赢的概率为
,且每局比赛输赢互不影响.若甲第n局的得分记为an,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若ξ=S2,求ξ的分布列及数学期望.
| 1 |
| 2 |
| 1 |
| 3 |
(Ⅰ)求S3=5的概率;
(Ⅱ)若ξ=S2,求ξ的分布列及数学期望.
分析:(I)S3=5,即前3局甲2胜1平.由已知甲赢的概率为
,平的概率为
,输的概率为
,能求出S3=5的概率.
(II)由题设知,ξ=0,1,2,3,4.P(ξ=0)=
×
=
,P(ξ=1)=
×
+
×
=
,P(ξ=2)=
×
+
×
+
×
=
,P(ξ=3)=
×
+
×
=
,P(ξ=4)=
×
=
.由此能求出ξ的分布列及数学期望.
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
(II)由题设知,ξ=0,1,2,3,4.P(ξ=0)=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 9 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 13 |
| 36 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
解答:解:(I)S3=5,即前3局甲2胜1平. (1分)
由已知甲赢的概率为
,平的概率为
,输的概率为
,
所以S3=5的概率为
(
)2(
)=
.(5分)
(II)由题设知,ξ=0,1,2,3,4
P(ξ=0)=
×
=
,
P(ξ=1)=
×
+
×
=
,
P(ξ=2)=
×
+
×
+
×
=
,
P(ξ=3)=
×
+
×
=
,
P(ξ=4)=
×
=
.
∴ξ的分布列
∴Eξ=0×
+1×
+2×
+3×
+4×
=
.(5分)
由已知甲赢的概率为
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
所以S3=5的概率为
| C | 2 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 8 |
(II)由题设知,ξ=0,1,2,3,4
P(ξ=0)=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 9 |
P(ξ=1)=
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 9 |
P(ξ=2)=
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 13 |
| 36 |
P(ξ=3)=
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
P(ξ=4)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴ξ的分布列
| ξ | 0 | 1 | 2 | 3 | 4 | ||||||||||
| P |
|
|
|
|
|
| 1 |
| 9 |
| 1 |
| 9 |
| 13 |
| 36 |
| 1 |
| 6 |
| 1 |
| 4 |
| 7 |
| 3 |
点评:本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,注意概率知识的灵活运用.
练习册系列答案
相关题目