题目内容
17.已知函数f(x)的定义域为R,则“f(x)是奇函数”是“f(1)=-f(-1)”的( )| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 f(x)是奇函数,可得f(1)=-f(-1),反之不一定成立,取f(x)=$\left\{\begin{array}{l}{0,x=±1}\\{{x}^{2},x≠±1}\end{array}\right.$.即可判断出关系.
解答 解:f(x)是奇函数⇒f(1)=-f(-1),反之不一定成立,取f(x)=$\left\{\begin{array}{l}{0,x=±1}\\{{x}^{2},x≠±1}\end{array}\right.$.
∴“f(x)是奇函数”是“f(1)=-f(-1)”的充分不必要条件,
故选:A.
点评 本题考查了函数的奇偶性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.已知复数z=$\frac{3-i}{1+ai}$是纯虚数,则实数a=( )
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
2.命题p:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,则下列表述正确的是( )
| A. | p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点 | |
| B. | p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| C. | p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| D. | p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 |
9.执行如图的程序框图,如果输出结果为2,则输入的x=( )

| A. | 0 | B. | 2 | C. | 4 | D. | 0或4 |