题目内容
(2013•广东模拟)已知向量
=(sinx,
),
=(cosx,-1).
(1)当
∥
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
+
)•
,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=
,b=2,sinB=
,若f(x0)+cos(2A+
)=-
+
,x0∈[
,
],求cos2x0的取值范围.
| a |
| 3 |
| 4 |
| b |
(1)当
| a |
| b |
(2)设函数f(x)=2(
| a |
| b |
| b |
| 3 |
| ||
| 3 |
| π |
| 6 |
| 1 |
| 2 |
3
| ||
| 5 |
| π |
| 8 |
| π |
| 2 |
分析:(1)由
∥
,结合向量平行的坐标表示可求tanx,然后利用二倍角公式及同角基本关系对cos2x-sin2x进行化简,代入即可求解
(2)利用向量的数量积的坐标表示及和差角、辅助角公式对已知函数化简可得f(x)=2(
+
)•
=
sin(2x+
)+
,然后结合正弦定理可求A,代入f(x)+cos(2A+
),化简可求
| a |
| b |
(2)利用向量的数量积的坐标表示及和差角、辅助角公式对已知函数化简可得f(x)=2(
| a |
| b |
| b |
| 2 |
| π |
| 4 |
| 3 |
| 2 |
,然后结合正弦定理可求A,代入f(x)+cos(2A+
| π |
| 6 |
解答:解:(1)∵
∥
,
∴
cosx+sinx=0,
∴tanx=-
…(2分)
cos2x-sin2x=
=
=
…(6分)
(2)f(x)=2(
+
)•
=
sin(2x+
)+
由正弦定理得
=
可得sinA=
,所以A=
,…(9分)
f(x)+cos(2A+
)=
sin(2x+
)-
,
∵f(x0)+cos(2A+
)=-
+
,x0∈[
,
],
∴sin(2x0+
)=
,cos(2x0+
)=-
| a |
| b |
∴
| 3 |
| 4 |
∴tanx=-
| 3 |
| 4 |
cos2x-sin2x=
| cos2x-2sinxcosx |
| sinx2+cos2x |
| 1-2tanx |
| 1+tan2x |
| 8 |
| 5 |
(2)f(x)=2(
| a |
| b |
| b |
| 2 |
| π |
| 4 |
| 3 |
| 2 |
由正弦定理得
| a |
| sinA |
| b |
| sinB |
| ||
| 2 |
| π |
| 4 |
f(x)+cos(2A+
| π |
| 6 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
∵f(x0)+cos(2A+
| π |
| 6 |
| 1 |
| 2 |
3
| ||
| 5 |
| π |
| 8 |
| π |
| 2 |
∴sin(2x0+
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 4 |
| 5 |
点评:本题主要考查了向量平行的坐标表示及二倍角公式、同角基本关系、和差角公式等知识的综合应用.
练习册系列答案
相关题目