题目内容

(2013•松江区二模)一质地均匀的正方体三个面标有数字0,另外三个面标有数字1.将此正方体连续抛掷两次,若用随机变量ξ表示两次抛掷后向上面所标有的数字之积,则数学期望Eξ=
1
4
1
4
分析:由题意可知两次抛掷后向上面所标有的数字有以下四种类型:(0,0),(0,1),(1,0),(1,1),可得ξ的取值为0,1.抛掷一次后出现数字1为事件A,出现数字0为事件B.由古典概型可得p(A)=P(B)=
1
2
.由于ξ=1当且仅当两次抛掷后向上面所标有的数字都为1,故可求得P(ξ=1),再利用对立事件的概率计算公式可得P(ξ=0),进而得到数学期望Eξ.
解答:解:由题意可知两次抛掷后向上面所标有的数字有以下四种类型:(0,0),(0,1),(1,0),(1,1),因此ξ的取值为0,1.
设抛掷一次后出现数字1为事件A,出现数字0为事件B.
由古典概型可得p(A)=P(B)=
1
2

ξ=1当且仅当两次抛掷后向上面所标有的数字都为1,故P(ξ=1)=
1
2
×
1
2
=
1
4

∴P(ξ=0)=1-P(ξ=0)=1-
1
4
=
3
4

故随机变量ξ的分布列为:
故Eξ=
3
4
+1×
1
4
=
1
4

故答案为
1
4
点评:知道两次抛掷后向上面所标有的数字分为四种类型,正确理解古典概型的概率计算公式、相互独立事件的概率计算公式、对立事件的概率计算公式、数学期望的计算公式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网